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Sam S. Yoon and Stephen D. Heister
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Indiana, USA

This article compares and contrasts linear stability analyses based on the deformations of an infinite
liquid column and due to boundary-layer vorticity imparted to the free surface from the orifice exit plane.
The bulk of the prior works, which date back to Kelvin-Helmholtz [1], Rayleigh [2], Weber [3], Taylor
[4], Ponstein [5], Levich [6], Sterling and Sleicher [7], and Reitz and Bracco [8], have focused on the
liquid column analysis. Though used to a lesser extent, the boundary-layer instability analysis by
Brennen [9] can also be used to predict the dominant wavelength of the laminar jet. Differences
between the two approaches are highlighted for sample injection conditions and injector geometries.

1. INTRODUCTION

The linear theory associated with primary atomization of a liquid jet is well established and
much studied. More recently, nonlinear analyses have served to compliment the linear
results and explain the presence of satellite droplets which have frequently been observed
in low-speed jets. At higher jet speeds, it becomes more difficult to assess the value of linear
theories because turbulence and secondary atomization become important contributers
and because the jet surface is often obscurred by droplets. In spite of these drawbacks, many
of today’s atomization models draw heavily from the linear theories based on a column of
liquid exposed to a high-velocity gas shear flow.

The biggest drawback of these theories is that there is no mechanism to include
effects of the orifice geometry on the possible wavelengths introduced to the liquid
surface. A notable exception here is the work of Hoyt and Taylor [10–12], which focused
on the boundary-layer behavior at the orifice exit plane as a significant player in the
subsequent instabilities observed in the jet. Drawing from a boundary-layer-based
instability analysis due to Brennen [9], these researchers showed that the wavelengths
observed in their carefully controlled experiment were in agreement with those predicted
using Brennen’s theory.

The aim of this short article is to compare and contrast these approaches and to assess
potentially important contributions of other researchers which have not been frequently
cited in prior literature. In this context, we provide a brief review of linear stability results
and highlight similarities and differences in the various approaches. Specific examples are
considered to illustrate differences between liquid column-based and boundary-layer-
based approaches.
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2. LORD RAYLEIGH’S ANALYSIS

Probably the most famous and pioneering stability analysis for the liquid jet was developed
by Lord Rayleigh [2]. Rayleigh considered the infinitely long, inviscid column of liquid
with negligible influence from the gas phase. He hypothesized that an infinitesimal
disturbance will cause the jet to break up under a capillary-based instability. The famous
dispersion relation he obtained is as follows:
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where r iw w iw= +  (i.e., wr = growth rate, 1i = − , and wi = frequency of oscillation),
σ = surface tension of the liquid, ρl = liquid density, a = orifice radius, k = wavenumber
= 2π/λ (i.e., λ = wavelength), and I1 (ka) and Io (ka) are modified Bessel functions of the
first kind. By expanding the Bessel functions in a power series and computing the maxi-
mum of the w versus ka curve, he obtained the result:
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for which the corresponding wavenumber and wavelength are

0.696 0.7 4.51ka d�= ≈ = (3)

There are numerous experimental confirmations of Rayleigh’s wavelength appearing
in low-speed jets. Many researchers have extended the result to the fully nonlinear regime
and assumed that the jet will actually fragment into sections 4.51d in length, which leads
to a predicted droplet diameter of about 1.89d as shown in Fig. 1. While such conditions
can be generated with a carefully controlled perturbation in an experiment, more com-
monly the jet is shown to bifurcate into two drops per wavelength; the presence of the
satellite drops are not predicted from linear theory, but numerous nonlinear results [13–
17] have confirmed their presence and agree well with size measurements from a variety
of experiments.

The Rayleigh jet is of course the simplest of all cases in that aerodynamic interactions
with the gas are neglected. The low jet velocities associated with this flow regime also imply
that instabilities emanating from the boundary layer inside the orifice are necessarily small.
For these reasons, there is good agreement between experiment and theory for a variety of
orifice designs.

3. WEBER’S EQUATION

Weber [3] extended Rayleigh’s analysis by adding the effect of viscosity of the jet, which gives:
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The coefficient of the w term accounts for viscous effects. McCarthy and Molloy [18]
provided the maximum growth rate of Weber’s Eq. (4):
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The corresponding most dominant wavelength is
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Fig. 1 Typical low-speed jet in the Rayleigh regime. Experimental image by Adam Hart-Davis [41]. (Reprinted
by permission of Adam Hart-Davis.)
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Nonlinear simulations for viscous [19] and inviscid [13, 20] flows show comparable
results for low-speed jets as well; the presence of viscosity only seems to decrease the rate
at which the instability grows, not the shape of the wave.

4. STERLING-SLEICHER EQUATION

The greatest shortcoming of Rayleigh and Weber equations is due to the neglect of
aerodynamic forces on the liquid jet. Sterling-Sleicher [7] (hereafter referred to as SS) had
developed the dispersion equation that takes into account the aerodynamic effects; the
general SS equation is
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In the absence of gas phase and viscosity (i.e., ε = µ = 0), the SS equation (7) reduces to
Rayleigh’s result. In addition, the general SS equation (7) can be written as follows:
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Sterling-Sleicher considered the case where ξ = ka < 1.0, which implies that the
wavenumber is small or the wavelength (i.e., λ = 2π/k) is large enough that it is of the order
of the nozzle radius, a. In this case, the general SS equation is simplified substantially:
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It should be noted that a typographical error is present in the original Sterling-
Sleicher article in the ε term. It should be U 2, but it was set as just U. Here U is the
“constant” and “uniform” jet speed. In the limit of �→∞  for an inviscid case, the SS
equation (7) is essentially the same as the Kelvin-Helmholtz equation, which is used
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to predict the smaller wavelengths (detailed proof of this claim is provided in the
following section).

5. REITZ-BRACCO EQUATION

Further extention of the SS equation was presented by Reitz-Bracco [21] with the assump-
tion that the liquid jet velocity is also a function of the radial direction [i.e., U = Ug(r)], as
in the Orr-Sommerfeld equation [22, 23]. However, they later assumed U = constant. This
equation of Reitz-Bracco (hereafter referred as RB) seems to be the most general disper-
sion expression available in the literature for the axisymmetric case.
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It should be noted that Levich [6] had performed a similar analysis, the result of
which is exactly the same as the RB equation except that Levich omitted the terms ρgw2

and ρgikUw of the gas by assuming that the two terms are negligible compared to the terms
ρlw2 and ρlikUw of the liquid. In the absence of viscosity and the gas phase (i.e., v = ε =
0), the RB equation (11) also recovers Rayleigh’s result. Further, the RB equation (11)
becomes the following if inviscid (i.e., v = 0):
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This is exactly the same as the inviscid case of the SS equation (9) except for the coefficient
of w2. This difference originated from Sterling-Sleicher’s uniform jet speed (i.e., U =
constant) assumption, which differs from Reitz-Bracco’s jet velocity approximation with
the gas velocity as a function of the radial direction. It is interesting to note that both the
inviscid SS equation (9) and the RB equation (13) are reduced to the following expression
in the limit as �→∞ :
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where we have used the approximations limξ→∞ I0(ξ)/I1/(ξ) = 0, limξ→∞ K0(ξ)/K1/(ξ) = 1
(see Pearson [24]), and ρl >> ρg. This Eq. (14) is essentially the Kelvin-Helmholtz
equation [1, 25].

6. PONSTEIN’S EQUATION

In this section, the linear theory of Ponstein [5] is discussed. His work, published in 1959
in Applied Scientific Research, has not been well recognized in the atomization community.
The work not only extended Rayleigh’s [2, 26] analysis to include gas-phase effects, it also
considered column rotation (swirl) in an analysis published long before Sterling-Sleicher
(1975), and even before Levich (1962).

Ponstein considered two cases: a rotating liquid column in gas phase and a rotating
bubble (or gas) column in a liquid surrounding for the second case. A uniform liquid
column in vacuum was well known by Rayleigh [2], who predicted the most dominant
wavelength, λ = 4.51d. Rayleigh [26] also considered a uniform bubble column in liquid
whose solution is
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This equation predicts a most unstable wavelength, λ = 6.48d. For an axisymmetric
rotating bubble column (based on e ωt), Ponstein gives the following result:
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where Γ is the circulation around the ring (or column), which can be estimated as Γ =
(2πa)Vθ from Saffman [27]. Here V�  is the tangential velocity of the ring surface. For a
nonrotating case (i.e., Γ = 0), Eq. (16) recovers Rayleigh’s result in Eq. (15). In this case,
circulation has a stabilizing influence as indicated by the negative sign on the Γ term. The
faster it rotates, the more stable the bubble ring is. Detailed discussion of Eq. (16) is
available in Lundgren and Mansour [28], where they modeled the evolution of the bubble
vortex-ring using the boundary integral method. An interesting example of the bubble
vortex-ring of Dolphin is discussed by Shariff [29].

Ponstein gives the following result for the second case he considered, a rotating liquid
column in gas:
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If we consider nonrotating (i.e., Γ = 0) and nonaerodynamic effect (i.e., U = ε = 0),
Rayleigh’s result is recovered. Here, circulation has a destabilizing effect as indicated by the
positive sign on the Γ term. The faster the column rotates, the more unstable it becomes.
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Increasing gas density ε serves to aid in stabilizing the column circulation term, but
destabilizes the dominant aerodynamic (U 2) term.

Considering the nonrotating case with aerodynamic effect, Ponstein’s equation (17)
can be written as
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For ξ < 1.0, it is known that I1(ξ)/I0(ξ) ≈ (ξ)/2. Applying this identity, Eq. (18) is
rewritten as
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This result is exactly the same as the inviscid case of the dispersion relation derived by
Sterling-Sleicher in Eq. (10).

7. TAYLOR’S EQUATION

Taylor [4] derived the following relation based on his aerodynamic theory:
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where x is the nondimensional wavelength of Reitz and Bracco [21] and g = g(x,T ) is the
function of the Taylor number, T.
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with Re = ρlUd/µ and Wel ,d = ρlU 2d /σ. The RB equation (11) in the limit of ξ → ∞ with
viscosity (i.e., v ≠ 0) is as follows:
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Expanding Eq. (22) yields:
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This equation (23) is modified in the form of Taylor’s equation (20) assuming that (ρg /ρl )
(w/Uk 2) is negligible compared to (w/Uk)2 and the temporal growth rate of the ρg/ρl term
in the imaginary part of w is also negligible (which is similar to what Levich had assumed
in his analysis [6]),

( )g
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If we hypothesize that the RB equation (24) is the same as Taylor’s equation (20), the
following relation can be set:

2x g (x) = h(x) (26)

Reitz and Bracco [21] also defined a function f (x) = x g (x). The numerical solution
of Eq. (24) was given by Reitz and Bracco. The most dominant nondimensional wave-
length xm was found to be 1.5 and thus ( ) 3 / 6 0.2887mf x = ≈  as 1.0aT ≥  (see Bracco
[30]). Though the value of ( ) 3 / 6mf x =  was first found by G. I. Taylor [4]) (and was
mentioned in Ranz’s article [31]), it seems that the most dominant nondimensional
wavelength xm = 1.5 [which gives ( ) 3 / 6mf x = ] was noted by Reitz and Bracco [21].
The same results have been found using the KH equation (14), which is significantly
simpler than Eq. (24). The KH equation (14) can be written in the form of Taylor’s
equation (20):

1/ 21
1g
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w
kU x

�
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 = −   
(27)

Note that the KH equation (14) is valid under inviscid (i.e., v = 0) assumption. If this is
the same as Taylor’s equation (20), then 2xg(x) = [1 – (1/x)]1/2 can be set:

1/ 21 1
( ) 1

2
g x

x x

 = −   
(28)

The f (x) and g (x) as functions of the nondimensional wavelength x are plotted in Fig. 2.
The g(xm) can be found by taking the derivative of Eq. (28) with respect to x.

3 1/ 2

( ) 1 2
4

dg x xy
dx x y

−

= (29)

Electronic Data Center, http://edata-center.com Downloaded 2007-10-11 from IP 163.152.55.18 by Korea University Anam-dong



CATEGORIZING LINEAR THEORIES FOR ATOMIZING ROUND JETS 507

where y = 1 – 1/x. Let 1 – 2xy = 0 to find the most dominant nondimensional wavenumber,
xm. This gives the following analytical results:

3
1.5 ( ) ( )

6m m m mx f x x g x= = = (30)

This shows that the viscosity is of little importance since no difference is seen in xm and
f (xm) values between Reitz and Bracco’s numerical result and our analytical results using
the KH equation (14) (see Fig. 2).

Wu et al [8] assumed that the initial droplet diameter, D, might be proportional to
the length of the most unstable wavelength, λ:

D = Bλ (31)

where
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Fig. 2 The functions g(x) by Taylor [4] and f (x) = xg(x) by Reitz and Bracco [21] as functions of nondimensional
wavenumber x = (ρgU 2)/(σk).
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B is a constant that is empirically approximated. Wu, Reitz, and Bracco [8] gave B ≈ 4.5,
based on the curve-fit of their experimental data. Applying this Eq. (32) to Hoyt and Taylor’s
case [11], which is discussed in detail in the next section (i.e., σH2O = 0.0734 kg/s2, ρair

= 1.23 kg/m3, U = 21 m/s, and d = 6.35 mm, thus Weg = 46.9), the most unstable
wavelength is λ ≈ d/5. The wavelength overpredicts the value observed in Hoyt and Taylor’s
experiment (i.e., λ ≈ d/13.8). It should be noted that Eq. (32) is capable of producing very
small wavelengths with large U and ρg, which is the case of Wu et al. [8]; this aerodynamic
theory works well for their atomizing jets of the shear layer-driven instability.

8. BOUNDARY-LAYER INSTABILITY ANALYSIS

Here we should note that the classical column-based theories we have presented are all
classified as temporal stability analyses. While these tend to be the most useful in
implemention in atomization models, there are also spatial and spatiotemporal theories
addressing other mechanisms of instability growth. For low-speed jets in the Rayleigh
regime, the temporal-based theory has been shown to be appropriate in both linear and
nonlinear regimes; but at higher jet speeds there is less evidence as to the preferred
approach. A more recent work by Lin and Chen [32] addresses this issue in more detail.

None of the conventional linear stability theories can account for the largely
axisymmetric waves observed by Hoyt and Taylor [11] in their famous 1977 experiments.
In this experiment, a carefully machined nozzle was used to provide a favorable pressure
gradient to a reasonably high-speed jet such that turbulence effects were minimized. The
resultant waves formed on the surface of the water jet showed wavelengths λ ≈ d/13.8,
which is not predicted well by the linear theories discussed above. These researchers
theorized that the thickness of the boundary layer at the orifice exit plane could play a
significant role in explaining the observed wavelength. It was suspected that the point of
inflection due to change in velocity profile from a no-slip to a free-surface edge condition
was responsible for the instability and the subsequent wave growth. Shkadov [33] was
another researcher working on this theory at the time.

For this reason, we review the classical boundary-layer instability based on the Orr-
Sommerfeld equation. Using (1) the solution by Betchov and Criminale [34] for the fully
developed 2-D steady parallel laminar flow, (2) the perturbation method [22], and (3)
linearization, the 2-D Navier-Stokes equations can be written as follows:
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2 2

1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ( ) 2
Re

u c v v vu v v v
i



�
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     ′′ ′′ ′′ ′′′′− − + = − −       
(33)

where u = u (y) is the axial velocity profile in the y direction, c = cr + ici is the complex phase
velocity, α is the wavenumber, v^ = v^(y) is the amplitude of the radial perturbation in the
y direction, and Reδ2 = Uδ2/ν. This is called the Orr-Sommerfeld equation. Sometimes
different notations [i.e., v^(y) = –iαφ(y)] are used by researchers (see Panton [23] and/or
Schlichting [22]). It should also be noted that φ(y) is not velocity potential, but complex
amplitude function for the streamfunction. There is no analytic solution to Eq. (33), but
the numerical solution for a wide range of values of frequency and Reδ2 is available by
Jordinson [34].
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Considering the inviscid case of the Orr-Sommerfeld equation (33) (i.e., Reδ2 → ∞),
the following equation is obtained:

2 2

1 1ˆ ˆ ˆ( ) 0u c v v vu
� �

  ′′ ′′− − + =   (34)

This is called the Rayleigh equation. Lord Rayleigh (1880–1913) provided a theorem
based on his equation (34), that “Velocity profiles with points of inflection are unstable.”
Rayleigh proved that the presence of a point of inflection is a necessary (though it is not
sufficient) condition for the appearance of unstable waves. This is a powerful statement, as
it can be used to classify the flow regime: laminar to turbulent flows. For example, the
velocity profile contains no point of inflection under favorable pressure gradient (i.e., ∂P/∂x
< 0). Generally, it is fair to state that the flow is laminar in such a case. On the other hand,
a point of inflection can be found in an adverse pressure gradient (i.e., ∂P/∂x > 0), where
the flow is sometimes unstable and eventually this may lead to turbulent flow.

The influence of gas density, and hence aerodynamic forces on the interface, has been
widely investigated experimentally. Reitz and Bracco [21] observed a substantial difference
in the atomization mechanism when the liquid jet was injected in different gases (i.e., ρN2
= 6 kg/m3 and ρXe = 23 kg/m3). Wu et al. [36] have reported a change in droplet size for
primary atomization when a different gas density was tested for the same liquid jet. From
this basis one may conclude that the aerodynamic interaction at the surface of the jet does
alter wave growth—i.e., that aerodynamic forces are of sufficient magnitude to contribute
to the instability.

Shkadov’s theory [33] states that the velocity profile of a liquid is independent of gas
density, which seems contradictory to the experimentally observed trend. This dilemma is
probably due to the high gas–liquid density ratio, which causes the growth rate due to the
aerodynamic term to dominate as compared to the growth rate due to the vortices rollup
(at the point of inflection of the velocity profile during the relaxation process), thereby
invalidating Shkadov’s theory. In addition, the droplet sizes are strongly dependent on
secondary atomization at high jet speed and high gas density conditions.

Clearly, the influence of the gas is regime-dependent, but the fundamental instability
mechanism is present in all regimes. The fundamental questions which should be asked
are: “Will instability occur in the absence of gas phase? If so, where is that instability
mechanism originating from?”

Hoyt and Taylor [10] did not observe differences in wave structure with differing
external air flows in their experiments. The axisymmetrically disturbed short wavelength
observed near the nozzle exit is present regardless of magnitude or direction of the air
velocity. Hoyt and Taylor concluded that this phenomenon has “no discernible effect of
relative air velocity.” In spite of Hoyt and Taylor’s effort in this regard, their result has not
well been recognized in the atomization community. For many years, the notion that
vorticity at the nozzle exit is responsible for the atomization has been overshadowed by the
aerodynamic linear theory and the experiment which showed a significant difference in
spray structure with the change in gas density.

Shkadov [32] provides the solution of the Rayleigh’s Eq. (34) and proves that the
amplitude of surface waves grows in the downstream direction, as the jet velocity profile
relaxes. This eigenvalue problem has also been solved by Brennen [9]. Brennen provided
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the boundary-layer instability analysis. He considered separated boundary-layer flow over
the planar plate using a Gaussian velocity profile. This resulted in

22 f
U


� �= (35)

where γ is the nondimensional frequency, f is the dimensional frequency [Hz] , δ2 is the
momentum thickness [m] , and U is the speed of the uniform flow [m/s] . Brennen
concluded that γ = 0.175 was the nondimensional frequency which would give maximum
amplification at the flow separation point.

Applying γ = 0.175 to the Hoyt and Taylor case [11],

5
2

21 m/s0.175
48,741 Hz

2 2 1.2 10 m
U

f
�

�  � −

    = = =    × 
(36)

Note that the boundary-layer momentum thickness, δ2, can be approximated using Blasius’
solution [37] for laminar flow assuming that δ2 << a:

21 1.721 0.664
Re Rex xx x


= = (37)

where Rex = Ux/ν and δ1 is the displacement thickness. Assuming that the wave speed is
about the same as that of the liquid jet U,

21 m/s
0.43 mm

48,741 Hz 14.8
U d
f

�≈ = = = (38)

While this was a theoretically predicted value, Hoyt and Taylor’s experimental observation of
the axisymmetrically disturbed wavelength was about λ ≈ 0.46 mm = d/13.8, as shown in
Fig. 3 (note: d = 6.35 mm). The comparison between theory and experiment was excellent.

McCarthy and Molloy’s experiment [18] provides further confirmation of the role of
the momentum thickness in wave formation at the orifice exit plane. They varied the
nozzle-to-diameter ratio (i.e., l /d ) and observed the effect of l /d on “laminar” jet structure.
In their article [18], it was not mentioned that the jets had distinctive axisymmetric waves
for different orifice designs, yet the experimental images do contain these structures as
shown in Fig. 4, reproduced from their article. Farther downstream, the jets become
turbulent (see cases l /d = 5 and 10 in Fig. 5) and result in the primary atomization.

To compare the McCarthy and Molloy results with Brennan’s theory, we assume that
boundary-layer development inside the passage can be approximated by boundary-layer
growth on a flat plate. Clearly, this assumption becomes poor when the boundary layer is
a substantial fraction of the orifice radius, but one could use a numerical analysis or more
elaborate theory to ascertain momentum thicknesses at the orifice exit plane more accu-
rately. The errors result from free-stream pressure gradients which develop as the boundary
layer builds in the passage. A thorough review of turbulent momentum thickness is given

Electronic Data Center, http://edata-center.com Downloaded 2007-10-11 from IP 163.152.55.18 by Korea University Anam-dong



CATEGORIZING LINEAR THEORIES FOR ATOMIZING ROUND JETS 511

by Klein [38]. Given this caveat, the predicted δ2 values using this technique, when
implemented in Brennen’s equation, show good agreement with the observed wavelengths
from the McCarthy and Molloy experiments as presented in Table 1. One can also note
from Table 1 that the δ2 values are all quite small relative to the orifice radius, thereby
lending credence to the simple approach of assuming flat-plate boundary-layer growth.

9. COMPARISON OF THE LINEAR MODELS

It is useful to compare the wavelengths predicted by the liquid column theories and the
boundary-layer theory for the same atomizer. In Fig. 6, wavelength predicted by Brennen’s
theory is plotted as a function of jet speed for various l /d and is compared with the SS and
KH liquid column-based analyses.

The results obtained by the Sterling-Sleicher equation (10) and that obtained by the
Kelvin-Helmholtz equation (14) are essentially the same at the higher jet speeds, indicat-
ing that the KH mechanism is dominant for atomizing jets. The Reitz and Bracco equation
(13) (though not plotted in Fig. 6) gives results very similar to the Sterling and Sleicher
result, as noted in prior discussion. These column-based results show a strong dependence
on jet velocity at the lower speeds, with asymptotic behavior at the high jet speeds. The
boundary-layer-based results are also provided in Fig. 6 for various orifice lengths. These
results show a more modest variation in critical wavelength at the lower injection velocities,
with similar asymptotic behavior at the high jet speeds. Results from the boundary-layer-
based analysis show a strong influence of orifice l/d, while the column-based analysis does
not include this parameter. In general, the boundary-layer-based results predict smaller
wavelengths at the low jet speeds and larger wavelengths at the higher jet speeds when
compared to the column-based results.

Fig. 3 Typical water jet into air in the atomization regime. Experimental image by Hoyt and Taylor [10], which
shows the most dominant wavelength λ = d/13.8 while Brennen’s theory predicts λB = d/14.8. (Reprinted by
permission of the Journal of Fluid Mechanics.)
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Fig. 4 McCarthy and Molloy’s experiment [18] for l/d = 10, 5, and 1: The most dominant wavelength appears
subsequent to the laminar region which can be scaled by Brennen’s [9] theory. (Reprinted by permission of
Elsevier Science.)

Fig. 5 McCarthy and Molloy’s experiment [18] for l/d = 10, 5, and 1 in the farther downstream. Droplet size is
not scaled by the most dominant wavelength. (Reprinted by permission of Elsevier Science.)
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Table 1 Summary for McCarthy and Molloy’s Experiment [18]

l/da Rex
b δ1/d δ2/d Reδ2

f c [Hz] λd λexp

1 4,748 1/40.04 1/103.8 46 22,758 d/2.89 d/2.8
5 23,738 1/17.90 1/46.41 102 10,178 d/1.3 d/1.4
10 47,477 1/12.66 1/32.82 145 7,197 1.1d 1.0d

a l/d = nozzle length-to-diameter ratio.
b Rex = Ul/ν.
c, d Brennen’s Eqs. (36) and (38), respectively.
Note: Blasius’ solution is used for δ1 and δ2 estimation.

Unfortunately, the influence of turbulence, especially at the higher jet speeds, makes
it difficult to perform experiments to compare the two theories. The axisymmetrically
perturbed waves are not observable when the jet flow is already turbulent flow at the nozzle
exit (see Fig. 1 of Wu et al. [39]). However, the flow at the Hoyt and Taylor nozzle exit
is nearly laminar flow, as the flow is laminarized through highly contracted nozzle geometry
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Fig. 6 Variation of the theoretically predicted boundary-layer waves as well as that of the Sterling-Sleicher equation
(10) and the Kelvin-Helmholtz equation (14) as a function of jet speed for various l /d. A water jet into air is considered:
ν = 1.12 × 10–6 m2/s and d = 1 mm. Second wind-induced regime for 26.76 m/s < U < 48.86 m/s and atomization
regime for U > 48.86 m/s.
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under the favorable pressure gradient [11]. Their carefully conducted experiment, which
substantially reduced all other possible perturbation sources (i.e., such as turbulence and
cavitation), made observation of the boundary-layer waves possible. For their water jet
(laminar at the nozzle exit), the Reynolds number based on the momentum thickness
(Reδ2) is about 225, while the Blasius solution indicates that the flow should be turbulent
for Reδ2 > 200.

This problem probably occurs because the favorable pressure gradient has shifted the
shape factor (i.e., H = δ1/δ2) the critical Reynolds number (Reδ2,crit) has increased. It should
be noted that a slight decrease in H can result in a substantial increase in Reδ2,crit [37, 40].
At this stage of research, it is not clear where the Reδ2,crit lies for the liquid jet. In Fig. 7,
we have considered a laminar water jet into air. It is shown that Reδ2 ncreases with
increasing l /d. In reality, it is not guaranteed that the flow at the nozzle exit is laminar for
high l /d. However, one will have a better chance of observing the boundary-layer waves if
Reδ2 < Reδ2,crit. It certainly would be interesting to generate additional experimental data for
these conditions.

Fig. 7 Variation of the theoretically predicted Reynolds number based on the momentum thickness as a function
of jet speed for various l /d: the same case as in Fig. 6.
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10. CONCLUSIONS

Linear analyses based on liquid column- and boundary-layer-based methodologies have
been compared and contrasted. The boundary-layer-based analysis has the advantage that
it addresses the orifice geometry as a primary influence in determining the most unstable
wavelength. The column-based theories have been shown to be largely equivalent in the
atomization regime, due to the dominance of the Kelvin-Helmholtz instability mechanism
at these conditions. In performing a sample comparison of the two methods for a water jet,
the boundary-layer-based scheme tends to predict smaller critical wavelengths at low-
speed conditions and larger critical wavelengths at high injection speeds. While the
column-based analysis has received more attention in the community, the boundary-layer-
based approach has been shown to have merit based on limited experiments aimed at
addressing this mechanism.
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