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SUMMARY

Three di�erent analytical solutions are presented for a potential vortex ring using three di�erent stream-
functions. Veri�cation studies con�rm that all three approaches are valid. It is found that the solution
obtained using the Biot–Savart law is the most e�cient method due to its simplicity. It is shown that
all analytical results are accurate to within machine accuracy and sample calculations are included.
Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The ring vortex is one of the classical potential �ow solutions and has been used in numer-
ous applications in modelling �uid �ows. For example, it is well known that a vortex ring
can be generated at an ori�ce exit when a piston (vortex ring generator) moves through a
circular tube. The resulting multiple vortex rings interact dynamically while they are streaming
downstream. The e�ect of such motion (instability) is of great interest to �uid dynamicists.
Thus it is, in practical application, generally useful to be able to compute velocities induced
by the vortex at arbitrary �eld points. There are three approaches to obtain the analytical
solutions of the vortex ring; applying the Cauchy–Riemann equation to the streamfunctions
and direct evaluation of Biot–Savart law. Even though all three approaches have been well
known to the �uid mechanics community, their exact solutions for any arbitrary �eld point
are not readily available in any standard �uid mechanics texts. Lamb [1] derives the stream-
function,  , of the axisymmetric vortex ring and de�nes the Cauchy–Riemann condition.
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No further derivation is performed. The analysis by Ramsey [2] is almost identical to Lamb’s.
Duncan et al. [3] provides the induced axial velocity at the centre of the vortex ring using
the direct evaluation of the Biot–Savart law. However, the general solution at any arbitrary
point is not available. Robertson [4] also gives the analytic expression for uz(r=0) which is
in agreement with that of Duncan et al. [3]. Karamcheti [5] derives the integral expression
of the Biot–Savart law and provides the analytic solution of the in�nitely long line-vortex,
not the round axisymmetric vortex ring. The streamfunction analysis by Batchelor [6] and
Sa�man [7] is similar to that of Lamb [1] and Ramsey [2]. Panton [8] also presents the
Biot–Savart law whose solution is exactly the same as that of Karamcheti [5]. More recently,
Nitsche and Krasny [9] have utilized the streamfunction approach and provided analytical
solutions for induced velocities at any general location. We used a di�erent the streamfunc-
tion (from the one Nitsche and Krasny [9] used) under the presumption that we should
obtain the same results. In principle, the direct evaluation of the Biot–Savart law should also
yield the analytical expressions for the vortex ring-induced velocities because the induced
velocities, u, is a curl of the streamfunction, �= ( =r)ê� (for axisymmetric case) which sat-
is�es the continuity equation for incompressible �ows. With these motivations, the analyt-
ical solution using Biot–Savart law was also attempted. In this paper, we develop a fully
analytic solutions, thereby removing the necessity to perform a numerical quadrature and
shows there are various ways to obtain the analytical solutions of a �lament potential vortex
ring.

2. ANALYTIC SOLUTIONS USING THE STREAMFUNCTION

For incompressible �uid, the continuity equation for axisymmetric case can be written as

∇ · u= @uz

@z
+
1
r

@
@r
(rur)=0 (1)

For irrotational �ows, we choose to determine the velocity u in terms of the curl of a
vector �

u=∇×� (2)

where �=( =r)ê� and  is a scalar streamfunction. The expanded form of Equa-
tion (2) is

u=∇×
(
 
r

)
ê�=

1
r
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êz − 1
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êr (3)

Thus

uz=
1
r
@ 
@r

; ur =−1
r
@ 
@z

(4)

This Cauchy–Riemann condition derived in Equation (4) satis�es the continuity Equation (1)
and the corresponding streamfunction,  , can be written in various ways.
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Figure 1. A schematic of vortex-ring geometry for computing induced velocities at arbitrary �eld points.

Figure 1 highlights the applicable geometry required to compute velocities at a ‘�eld point’,
z; r subject to a ring vortex located at a point zi; ri. Nitsche and Krasny [9] utilize the stream-
function which can be expressed by the Laden’s transformation [1, 11]

 =
�
2�
(�1 + �2)[K(�)− E(�)] (5)

where K(�) and E(�) represent complete elliptic integrals of the �rst and second kind,
�=(�2 − �1)=(�2 + �1), �21 = (z − zi)2 + (r − ri)2, and �22 = (z − zi)2 + (r + ri)2. Here, the
strength of the vortex is �. While the axial and radial velocities induced by a �lament
vortex ring can be obtained using Equation (4), the partial derivatives of  are given as
follows:
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The solution of Nische and Krasny [9] is used as benchmark to verify the new solutions we
developed using di�erent approaches.
Another form of the streamfunction is available in References [1, 6]. We used the di�erent

 expression to �nd another form of the solution

 =
�
2�

√
rir
[(

2√
m

−√
m
)
K(m)− 2√

m
E(m)

]
(8)
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where m=4rri=a2 and a2 = (r + ri)2 + (z − zi)2. In this new approach, the partial derivatives
of  are given as follows:

@ 
@z
=
(
�
4�

z − zi
a

)[
c1K(m) + c2

dK(m)
dm

+ c3
d2K(m)
dm2

]
(9)

@ 
@r
=
(
�
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r + ri
a

)[
d1K(m) + d2

dK(m)
dm

+ d3
d2K(m)
dm2

]
(10)

with the following coe�cients c1 − c3 and d1 − d3:

c1 =m+ 4p; c2 = 4m(m− 1) + 4(9m− 4)p; c3 = 16m(m− 1)p (11)

d1 =m+ �; d2 = 4m(m− 1) + (9m− 4)�; d3 = 4m(m− 1)� (12)

where

p=−2rri
a2

; �=
4ri

(r + ri)
+ 4p (13)

While the �rst derivative of K(m) is identi�ed in terms of K(m) and E(m),

dK(m)
dm

=−K(m)
2m

+
E(m)

2m(1−m)
(14)

its second derivative, d2K(m)=dm2, must be obtained from the hypergeometric di�erential
equation [10]

m(1−m)
d2K(m)
dm2

+ [1− 2m] dK(m)
dm

− 1
4
K(m)=0 (15)

3. ANALYTIC SOLUTION USING BIOT–SAVART LAW

It is known that the streamfunction  can be written in integral form [7]

 =
�
4�
(rri)

∫ 2�

0

cos(�− �i)
|r− ri| d(�− �i) (16)

where

|r− ri|= [(z − zi)2 + r2r2i − 2rri cos(�− �i)]1=2

= [A+ B sin �i]1=2 (17)

where A=(z − zi)2 + r2 + r2i and B=−2rri for an axisymmetric case (note �=�=2). If
we substitute the integral form of  of Equation (16) into the curl of a vector � of
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Equation (2), then the Biot–Savart law [3–5] can be obtained:

u=∇×
(
1
r
 ê�i

)

=∇×
(
�
4�

ri
∫ 2�

0

− sin �i
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)

=
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|r− ri|3 d�iêz +
�
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ri
∫ 2�

0

(z − zi) sin �i

|r− ri|3 d�iêr (18)

Arranging Equation (17) to be such that sin �i=(|r − ri|2 − A)=B and substituting this
expression for sin �i into Equation (18) yields
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where

I1 =
4
a
K(m); I2 =

4
a3

E(m)
(1−m)

(21)

which completes the general formulation for the induced velocities. Equations (19) and (20)
are relatively simpler than the previous solutions obtained using streamfunction approach.

4. VERIFICATION OF THE ANALYTICAL RESULTS

A numerical routine was written to compare these expressions (Equations (19) and (20)) with
those obtained from di�erentiation of the streamfunction. The comparison was made on a ring
vortex of unit strength centred at ri; zi=0:5; 0:5. Streamline patterns and velocity vectors for
this �ow are shown in Figure 2. In this calculation, the elliptic integrals K(m) and E(m)
were computed from polynomial approximations from Abramowitz and Stegun [10] which
are accurate to within 2× 10−8. Previously, it is shown that there are three di�erent analytical
methods: (i) the streamfunction solution of Nitsche and Krasny [9], (ii) the streamfunction
solution of Equations (9) and (10), and (iii) the solution by Equations (19) and (20) of the
Biot–Savart law.
The streamfunction-based approach of Nitsche and Krasny [9] has been used to compare

the results of the numerical solutions and the new analytical solutions. Streamline patterns for
conditions used in Figure 2 are shown in Figure 3 for various Gaussian quadrature points and
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Figure 2. Streamlines and vortex-induced velocity vectors: vortex-ring location at zi= ri=0:5.

the analytical methods. While the Gaussian integration, I , is de�ned as follows:

I =
n∑

i=1
wif(xi) (22)

where wi are weighting factors and f(xi) is the integrand, we have varied the numerical
resolution (46n696) to investigate its e�ect. It is shown that the results obtained by the
low numerical resolution (i.e. 4 points) are not acceptable for the case used in Figure 2; it
is probably due to large vortex strength. The streamline patterns with 20 Gaussian points or
higher yield the result equivalent to the analytic solution of Nitsche and Krasny [9]. Results
of the new analytical solution is in exact agreement with those of Nitsche and Krasny [9].
In Table I, the sample calculations with the condition used in Figure 2 are performed for an
arbitrary �eld point, z= r=1:00. The results show at least 20 Gaussian points are required to
obtain the solutions within 1% accuracy. Accuracy of the new analytical solutions are within
∼ 10−16 accuracy.
Table II shows the comparison of the computational e�ciency. The calculations have been

performed on 2:4 GHz HP machine with LINUX environment. Field points are constructed
to be such that the square grid cell does not overlap with the location of the vortex-ring
zi= ri=0:5. The grid cells (or �eld points) of 400× 400 are used with a ring vortex of unit
strength to test the e�ciency comparison. The CPU time for the analytical solution is less
than that of 8 Gaussian point method though the 4 Gaussian point method is faster than the
analytic solution by the slightest margin. However, the 4 point method is of little practical
value as it yields inaccurate results. It is shown that the analytical solutions of the Biot–Savart
law is the most e�cient analytical method.
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Anal. Sol. by Nitsche and Krasny
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Anal. Sol. using Biot-Savart law
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Figure 3. Streamlines comparison between Gaussian quadrature (4, 8, and 20 points) and analytic
solutions. X indicates the vortex-ring location at zi= ri=0:5.
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Table I. Both numerical solutions (Gauss quad.) and the new analytical solutions are compared with
the analytical solution by Nitsche and Krasny [9].

Solution methods |Error| in uz (%) |Error| in ur (%)

Gauss 4 pts. quad. 35.24 4.96
Gauss 8 pts. quad. 97.87 2.32
Gauss 20 pts. quad. ∼ 10−2 ∼ 10−6

Gauss 40 pts. quad. ∼ 10−5 ∼ 10−7

Gauss 64 pts. quad. ∼ 10−6 ∼ 10−8

Gauss 96 pts. quad. ∼ 10−7 ∼ 10−9

Anal. Sol. using Eqs. (9) and (10) ∼ 10−16 ∼ 10−16

Anal. Sol. using Biot–Savart law ∼ 10−16 ∼ 10−16

Table II. Comparison of the computational cost in CPU time (s).

Solution methods CPU time (s)

Gauss 4 pts. quad. 4.535
Gauss 8 pts. quad. 5.701
Gauss 20 pts. quad. 8.416
Gauss 40 pts. quad. 13.173
Gauss 64 pts. quad. 18.796
Gauss 96 pts. quad. 19.681
Anal. Sol. by Nitsche and Krasny [9] 10.632
Anal. Sol. using Equations (9) and (10) 11.205
Anal. Sol. using Biot–Savart law 5.604

5. CONCLUSIONS

New analytic solutions for the velocity �eld induced by a potential vortex ring are obtained
using both the streamfunction approach and the Biot–Savart law. The equivalence of the
streamfunction approach and the Biot–Savart law is analytically shown. The solution from
Biot–Savart law is relatively simple and computationally e�cient compared to the numerical
integration and other analytical methods.
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