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On the nonlinear stability of a swirling liquid jet
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Abstract

The nonlinear deformation and atomization of a rotating column is considered using an axisymmetric boundary
element formulation. Swirl has been considered by superposing a potential vortex to the bulk flow of the jet. The resulting
model has been shown to reproduce the classical linear result due to Ponstein and parametric studies are conducted in the
nonlinear regime to determine wave shapes and droplet sizes. As with prior nonlinear column breakup studies, results indi-
cate that satellite drops are formed from the main wave under virtually all conditions. The ratio of the main drop to satel-
lite drop diameter is shown to be remarkably constant over a variety of wave numbers/column lengths thereby providing a
potential approach to produce tightly controlled bimodal sprays.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The instability of a jet is of significant interest in both the academic community and within industries due to
the wealth of practical industrial applications including: ink-jet printing, agricultural sprays, IC-engines, and
numerous manufacturing and painting processes. If drop size is to be predicted using the instability theory, the
predicted value can be of great value as an initial condition for a spray simulation and as validation data when
designing a spray nozzle for a specific application.

The origins of the instability theory can date back to the late eighteenth century by the Lord Rayleigh
(1878). The Rayleigh’s inviscid incompressible column jet analysis is probably the most classical and most
frequently cited linear instability theory in the relevant literature. Weber (1931) extended Rayleigh’s analysis
by adding the effect of viscosity of the jet. It is note worthy that both Rayleigh (1878) and Weber (1931) con-
sidered the limiting case of ka! 0 (where k is the wavenumber and a is the column jet radius), which indicates
that the both analyses are applicable for the relatively large wavelength only; the wavelength is greater or
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comparable to the jet radius). The linear theories were later revisited by Levich (1962), Sterling and Sleicher
(1975), and Reitz and Bracco (1982). Their linear theories are applicable for the viscous jet and for a wide
range of wavenumber. However, all the linear theories are limited to the case of infinitesimal deformation
and therefore cannot strictly be used to predict droplet sizes.

It is now well known that the nonlinearity in the surface deformation process produces several satellite
drops as multiple crests are formed over a given wave on the free surface. In this case, the linear theory cannot
predict the satellite drop formation. Yuen (1968) extended the Rayleigh’s linear theory to the nonlinear case,
where Yuen derived the lengthy 2nd and the 3rd order terms for the dispersion equation. Yuen’s theory was
later validated with the experimental data of Rutland and Jameson (1970). However, it was later pointed out,
by Nayfeh (1970), that Yuen’s 3rd order terms was incorrect for the wavenumbers close to the cutoff wave-
number. Lafrance (1975) provided the correct 3rd order term in analytic form, which was free from the secular
terms contained in the Yuen’s analysis. More recently, a nonlinear unsteady calculation was achieved numer-
ically using the boundary element method (BEM) for the column jet by Hilbing and Heister (1996). They
validated their predicted satellite drop size with the experimental data of Rutland and Jameson and then
showed the controlling mechanism for drop size. Surely, both theoretical and numerical analyses for both lin-
ear and nonlinear cases are well archived for a column jet in the literature. However, the instability study on
the effect of swirl (or rotation) on a column jet has been studied less.

It appears that Ponstein (1959) is the first author who considered the effect of swirl on the stability of a
classical liquid jet/column. The Ponstein’s analysis was so complete and original that Ponstein’s dispersion
equation is capable of recovering the dispersion equations of the aforementioned authors (Rayleigh, 1878;
Weber, 1931; Levich, 1962; Reitz and Bracco, 1982) for their specific cases when considering the non-swirling
case. The Ponstein’s equation can also recover the Kelvin–Helmoltz and the Taylor’s equation for the limiting
case of ka!1, where the relevant wavelengths are much smaller than the jet diameter. Ibrahim (1993) solved
one dimensional unsteady Navier–Stokes equations applied for the swirling jet and showed his numerical solu-
tions were in agreement with the Ponstein’s linear theory. Ibrahim later included the convective term and
presented the nonlinear results. The nonlinear result indicated that the growth rate was a bit smaller than that
of the linear result. No shift in the wavenumber of the maximum growth rate was clearly observed and, thus,
the information on the reduction of the main drop size due to the mass loss to the satellite drops could not be
obtained.

It is our objective to extend the linear theory and prior nonlinear results in order to identify the presence of,
and size of, any satellite droplets formed during the nonlinear portion of the jet deformation. The presence of
satellite droplets has long been noted in the Rayleigh jet (Lundgren and Mansour, 1988; Hilbing and Heister,
1996), and today nonlinear simulations can reproduce the measured droplet sizes quite accurately. While
electrostatics (Setiawan and Heister, 1997) and jet excitation (Orme and Muntz, 1990) have been used in
the past to control droplet sizes in the Rayleigh regime, the use of swirl has not been studied in any detail.
Here we employ an axisymmetric boundary element method (BEM) by superposing a potential vortex with
the bulk mean flow. The computations are validated against Ponstein’s linear theory and parametric studies
are reported for the nonlinear case.

2. Model development

Since the early 1990s, boundary element method (BEM) solutions have appeared in the literature for atom-
ization problems of various types. Solutions for the classical liquid jet (Lundgren and Mansour, 1988), the
finite-length liquid jet (Hilbing and Heister, 1996), electrostatic jets (Setiawan and Heister, 1997), and jets
in wind-induced regimes (Spanger et al., 1995) have provided nonlinear companions to classical linear results
dating back to Rayleigh’s classic work in the late 1800s. In case of non-swirling flow, Yoon and Heister (2004)
provide a complete description of the basic model elements while the complete modeling description can be
found in Park and Heister (2006) for a swirling flow. For that reason, only highlights will be presented here
in the interest of brevity. The addition of a capability to consider swirling flows was required for this appli-
cation, and this treatment will be discussed in detail.

An inviscid, incompressible, axisymmetric flow is presumed such that the flow dynamics are governed by
Laplace’s equation, $2/ = 0, where / is the velocity potential. The BEM utilizes an integral representation
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of this equation to provide a connection between / values on the boundary, the local geometry, and the local
velocity normal to the boundary, q = o//on, as follows:
a/ð~riÞ þ
Z

S
/

oG
on̂
� qG

� �
ds ¼ 0 ð1Þ
where /ð~riÞ is the value of the potential at a point~ri, S is the boundary of the domain, a is the singular con-
tribution when the integral path passes over the ‘‘base point’’, and G is the free space Green’s function cor-
responding to Laplace’s equation. For an axisymmetric domain, the free space Green’s function can be
expressed in terms of elliptic integrals of the first and second kinds and is a function solely of the instantaneous
surface geometry. For this reason, a discrete representation of Eq. (1) can be cast as a linear system of equa-
tions relating local / and q values. In the discretization, both / and q are assumed to vary linearly along each
element, thereby providing formal second-order accuracy for the method. Since the resulting integrals do not
have exact solutions in this case, Gaussian quadrature (Smirnov, 1964) is used to maintain high accuracy of
integration and preserve second-order accuracy overall.

While this governing equation is linear, nonlinearities in these free surface problems enter through the
boundary condition at the interface. The unsteady Bernoulli equation provides a connection between the local
velocity potential and the surface shape at any instant in time. Prior formulations (Yoon and Heister, 2004;
Park et al., 2005; Park and Heister, 2006) have provided a derivation of this result suitable for implementation
in a Lagrangian surface tracking environment. For the swirling flow, modifications are required to account for
the centrifugal pressure gradient created by the swirl. Assuming we have a coordinate system moving with the
bulk velocity of the jet, the dimensional capillary velocity, U = (r/qa)1/2, is the velocity chosen for the nondi-
mensionalization; the Weber number becomes a unity in this case. Using this quantity, the dimensional jet
radius (a), and the liquid density (q), the unsteady dimensionless Bernoulli equation without swirl is as follows:
D/�

Dt�
¼ 1

2
j~u�t j

2 �~u�t �~u�v � P �g � jþ Boz� ð2Þ
where z* is the axial coordinate, P �g is the imposed gas pressure, capillary forces are accounted for via the local
surface curvature, j, and the Bond number (Bo = qga2/r) addresses any hydrostatic pressure changes. Phys-
ically, this result is a Lagrangian form suitable for use for fluid elements moving with the local velocity of the
free surface.

The total surface velocity, ~ut, can be computed via a superposition of the base axial flow in the injector
ð/;~uÞ with a potential vortex ð/v;~uvÞ. Letting u,v,w represent axial, radial, and circumferential velocity com-
ponents respectively, we may write
/t ¼ /þ /v; ut ¼ uþ uv; vt ¼ vþ vv; wt ¼ wþ wv ð3Þ

Superposition of a potential vortex can be achieved by starting with the complex potential
F ðzÞ ¼ � iC
2p

logðzÞ ð4Þ
It is noted that z is complex variable herein, C is vortex strength, and F is the complex potential.
The resulting velocity components for this flow are as follows:
uv ¼ 0; vv ¼ 0; wv ¼
C

2pr
ð5Þ
This vortex is irrotational everywhere except at ~r ¼ 0. Using Eq. (5), the total velocity in Eq. (3) can be
computed;
1

2
j~utj2 �~ut �~uv ¼

1

2
ðu2 þ v2 � w2

vÞ ð6Þ
where
1

2
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It is noted that Us is the swirling velocity of the jet at its surface, i.e. where r = a. Nondimensionalizing this
result using the approach described above gives:
D/�

Dt�
¼ 1

2
j~u�j2 � P �g � jþ Boz� � 1

2Ro2r�2
ð8Þ
Here the Bond numbers is defined above and Rossby number is defined as the ratio of capillary velocities and
swirling: Ro = (r/qa)1/2/Us. Thus if swirling increases (Us), then Ro decreases, and vice versa. In this modified
Bernoulli equation accounting for the swirl velocity, the last term on the RHS of the equation corresponds to
the circumferential pressure developed by the potential vortex. For the present simulations we neglect gravity
and the interactions with the gas phase P �g ¼ Bo ¼ 0.

To determine the evolution of the free surface with time, a Lagrangian form of the kinematic condition is
utilized:
Dz
Dt
¼ o/

os
cos b� q sin b

Dr
Dt
¼ o/

os
sin bþ q cos b ð9Þ
where b is the local slope of the wave with respect to the horizontal direction. Eqs. (8) and (9) are integrated in
time using a 4th-order Runge–Kutta scheme to provide the evolution of the velocity potential and the motion
of the free surface.

For long integrations or resolution of highly distorted surfaces, points on the free surface will tend to bunch
in regions of higher curvature as a result of the free-surface motion. For this reason, the points on the free
surface are redistributed at each time step using a cubic spline fitting (Yoon and Heister, 2004) of the instan-
taneous shape. The Laplace equation is solved to update velocities and the process is marched forward in time.
Formally, the resolution of the scheme is second-order in space and 4th-order in time, but surface curvature
and capillary forces are resolved with 4th-order accuracy given a set of points defining the instantaneous
shape. More details regarding the numerical procedure can be found in Hilbing and Heister (1996).

Ponstein (1959) was the first author to consider the linear stability of the swirling jet. Presuming that the
deformation of the surface from a cylindrical shape takes the form of g = g0e(-t+ikz) for an infinitesimal dis-
turbance, his classic result relates the growth rate, x, to the wave number of that disturbance, k, as follows:
x2 ¼ r
qa3
ð1� k2a2Þ þ C

2pa2

� �2
" #

ðkaÞ I1ðkaÞ
I0ðkaÞ ð10Þ
where I0 and I1 are modified Bessel functions of the zeroth and 1st order, respectively. When C = 0 (equivalent
to Ro!1 or Us! 0), this result reduces to the classic Rayleigh result for instability of a liquid column.

3. Results and discussion

Fig. 1 shows the computational domain for the rotating infinite liquid jet in this simulation. A constant grid
spacing of ds* = 0.005 along the liquid surface was employed for this calculation. Thus total number of grid
points is dependent on the investigated wave length; typical grids employed vary from 100 to 400 nodes in the
simulations. The calculated result was compared against the linear result given by Eq. (10) by running a series
of calculations at different k and Ro values. Assuming a very small initial deflection, g�0 ¼ 0:0001, and time
step, dt* = 0.0025, the growth rate was computed from the numerical result using surface velocities, which
was derived by Lundgren and Mansour (1988).
x�2 ¼ v�2r

ðr� � 1Þ� � g�20

ð11Þ
where v�r ¼ dr�=dt�. At the peaks (kz = 0, 2p) and trough (kz = p) of the wavelength, the normal velocity
obtained by the BEM solver can be utilized directly in the calculation. Fig. 2 shows the growth rate of the
liquid jet as a function of dimensionless simulation time. The computational time to get the converged growth
rate varies slightly according to the flow conditions, i.e. wave number and Rossby number. However the
growth rate in most of simulations was quickly converged in 30 minutes on the 1.0 GHz Athlon CPU used
in the modeling.
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Fig. 1. Computational domain for the rotating infinite liquid jet.
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Fig. 2. Typical time history of wave growth rate (Ro = 1.0 and k = 0.86). Note that the dimensionless time, t* = tUs/a.
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Fig. 3 shows a comparison of the present calculation and the result of Ponstein’s linear stability analysis.
This figure shows the variation of wave growth rate with wave number for the Rossby numbers of 5.0, 1.0, and
0.5. At the weakly swirled Ro = 5 condition, there is very little difference in the results with those computed by
Rayleigh. Excellent agreement is obtained between the results of present BEM simulation and Ponstein’s the-
oretical result for all conditions. Companion grid function convergence studies confirm the accuracy and con-
vergence of the scheme into the nonlinear regime as well. The computational mesh spacing of ds* = 0.005 was
employed in subsequent calculations shown below.

3.1. Nonlinear wave forms

Using the Ponstein result in Eq. (10), one can establish the wave number that maximizes the growth rate for
various levels of swirl. Using the k values resulting from this process, a series of simulations were conducted at
various Ro conditions to assess the effect of swirl on nonlinear wave shapes. Figs. 4–6 summarize results from
this study. Fig. 4 depicts wave shapes in the weakly nonlinear regime at various Ro conditions. The Ponstein
result predicts a decrease in the most unstable wavelength as swirl is increased (Ro decreased). The Ro = 5
result is nearly identical to the Rayleigh jet as the results of swirl are very minimal for this condition even into
the nonlinear regime.

Fig. 5 shows the breakup profiles near the pinching point for the conditions shown in Fig. 4. Here, the axial
coordinate is scaled to permit all results to be presented on a column length scale from 0 to 1.0. The highly
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swirled jets tend to take on a more bulbous appearance in the main droplet, while satellite drops tend to be
more flattened at this condition as compared with the weakly-swirled case. Simulations were terminated when
a node on the initial jet surface came within r/a = 0.05 of the centerline. A similar pinch condition was utilized
in prior studies (Yoon and Heister, 2004) and was shown to be sufficient for determination of droplet sizes.
Since the potential vortex used to simulate swirl is singular at the centerline, the results near the pinch condi-
tion will require close scrutiny. It will be desirable to confirm the shapes with focused experiments at similar
conditions.

Fig. 6 shows perspective views of the droplet formation condition at various Ro values. We see that the
droplet shape is far from spherical at the pinchoff condition as the swirl strength is increased. The main droplet
is deformed like a disk near Ro = 0.8 and finally it forms a doughnut shape because the droplet is stretched in
the radial direction by the centrifugal force. Presumably if the swirl strength is strong enough to overcome the
surface tension, the main droplet may be unstable and secondary breakup of this drop is possible. This con-
dition was not realized under the range of Ro values investigated.



Fig. 6. Jet profiles at the pinching condition for various Ro values. All profiles are plotted in the same length scale.
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3.2. Computed drop sizes

A series of parametric studies was conducted to illuminate the nonlinear effect of flow conditions to drop
size on rotating liquid jets. Using the grids described in the previous section, typical run times for these studies
were order of 1–2 h on a 1-GHz CPU computer. In order to investigate the drop size formed from the insta-
bility of rotating liquid, numerous simulations were performed at various Ro values for a range of wave
numbers. Fig. 7 provides a summary of these studies. As with the classical Rayleigh jet, the satellite and main
drops tend to merge toward a similar size at the low wavenumber, i.e. long wave, conditions. Increased swirl
tends to increase the size of satellite drops relative to the unswirled conditions. By forcing the jet at a given
frequency (i.e. wavenumber) and employing a given amount of swirl, a variety of bimodal distributions can
be obtained.
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Fig. 8 presents a compilation of main/satellite drop sizes assuming Ponstein’s result is used to determine the
kmax value at each Ro. Note here that the drop radius was calculated for perfect sphere having the correspond-
ing volume because the drops formed are in general far from spherical as shown in Fig. 6. Both main and satel-
lite drops tend to decrease in size under highly swirled conditions due mainly to the fact that kmax is increased
under these conditions. The fact that the shape of the curves is nearly the same led us to investigate if there was
a simple scaling between the two predicted droplet sizes.

Fig. 9 highlights the calculated droplet sizes, nondimensionalized by the Ponstein result, for various Rossby
numbers. Once again, the kmax value from the Ponstein equation is used to predict the column length for each
Ro condition. In Fig. 9, it is clearly shown that the ratio between main and satellite remains nearly constant
even when the swirl strength was varied. It is very interesting that the ratios of these two drop sizes about the
theoretical result are almost constant regardless of swirl strength. The predicted main drop size from the BEM
model corresponds to 99% of theoretical result of the Ponstein equation, while the satellite drop size is 31% of
the theoretical value over a large range of Ro values. Roughly 97% of the volume in the initial column is con-
tained in the main drop, while the satellite drop comprises the remaining 3%. This interesting property can
permit the manufacture of bimodal distributions that in principal can be quite tightly controlled.
0.0
0.3

0.6

0.9

1.2

1.5

1.8

2.1

Ponstein theory

Main droplet

Satellite droplet

R
D

ro
p

Ro
0.5 1.0 1.5 2.0 2.5 3.0

Fig. 8. Variation of predicted drop size with Rossby number assuming the most unstable wavenumber from Ponstein’s equation (Eq.
(10)).



1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Satellite drop : 31% of theory

Main drop : 99% of theory

R
D

ro
p:

 (R
C

al
/R

Th
eo

ry
)

Ro
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Fig. 9. The size of the main and satellite drop; it shows the ratio between the main and satellite drops as a function of the Rossby number.

1108 H. Park et al. / International Journal of Multiphase Flow 32 (2006) 1100–1109
Some manufacturing/printing processes further utilize electrostatics to control the paths of satellite drops
and effectively sort them from the main stream. It is possible that incorporation of swirl could provide a desir-
able feature for controlling the satellite drop size for both forced (Fig. 7) and naturally-occurring (Figs. 8 and
9) conditions.

4. Conclusions

A fully nonlinear model has been developed for simulating the swirling jet. An axisymmetric boundary ele-
ment formulation has been utilized wherein a potential vortex is superposed to the bulk flow to simulate the
swirl in the jet/column. The corresponding form for the nonlinear Bernoulli equation free surface boundary
condition has been developed.

A linear instability analysis due to Ponstein has been used to validate the newly developed model. The dif-
ference between computed growth rates and the theoretical results is within 1% for all conditions studied.
Parametric studies were conducted while varying the swirl strength to observe their effect on the wave growth
rate and drop size. Increasing swirl tends to increase the size of satellite drops and therefore provides a mech-
anism to control droplet sizes for low-speed liquid jets. Main drops tend to take on doughnut shapes at the
pinching condition for highly swirled cases. An interesting scaling was discovered for cases where the Ponstein
value of most unstable wavenumber is used at various swirling conditions. In this case, the main drop is found
to be about 99% of the single drop size predicted by Ponstein, while the satellite drop is about 31% of the Pon-
stein drop size.
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